
N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Methods of Computational Astrophysics:
Galaxy Simulation

Nathaniel R. Stickley

Department of Physics & Astronomy

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Outline
1 N-body Methods

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

2 Fluid Dynamics & Other Physics
Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

3 High-Performance Computing
Microarchitecture
Vectorization & Parallelization
Optimization
Productivity Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

The Problem

We try to understand dynamics by looking at static images.

We can view different objects at different epochs, but we
cannot follow the evolution of individual objects.

It is usually impossible to perform experiments in a laboratory
to better understand cosmological objects.

Idea:

Use known physics to build a computational model of the system
of interest. Watch the simulated objects evolve in the model.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

The Problem

We try to understand dynamics by looking at static images.

We can view different objects at different epochs, but we
cannot follow the evolution of individual objects.

It is usually impossible to perform experiments in a laboratory
to better understand cosmological objects.

Idea:

Use known physics to build a computational model of the system
of interest. Watch the simulated objects evolve in the model.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

The Ideal Solution

If we had infinite computing power available...

Create fully-realistic simulation.

Calculate all known physics.

Precision is limited only by uncertainty principles.

Simulate individual photons, gas, dust particles.

Stellar evolution is computed automatically and consistently,
just as in nature.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

The First Approximation

Approximate stars as spheres or point-masses.

Approximate electrodynamics using classical electrodynamics.

Approximate gases and plasmas as continua.

From the distribution of matter and EM field, construct the
energy-momentum tensor Tµν

Solve the Einstein field equation...

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

The First Approximation

The Einstein field equation

Gµν =
8πG

c4
Tµν

where

Gµν = Rµν −
1

2
gµνR

⇒ Rµν −
1

2
gµνR =

8πG

c4
Tµν

Ricci tensor Rµν and scalar curvature R are constructed from
derivatives of the metric gµν .

Goal: Find the metric gµν .

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

The First Approximation

Once metric is obtained, evolve matter and fields forward.

Repeat process.

Problem: System of 10 non-linear, coupled PDE’s!

Tµν =


T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33

 , Tµν = Tνµ

Possible to solve numerically, but very difficult task in general.

Code: OpenGR

http://wwwrel.ph.utexas.edu/openGR/

Nathaniel R. Stickley Methods of Computational Astrophysics

http://wwwrel.ph.utexas.edu/openGR/

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

The First Approximation

Once metric is obtained, evolve matter and fields forward.

Repeat process.

Problem: System of 10 non-linear, coupled PDE’s!

Tµν =


T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33

 , Tµν = Tνµ

Possible to solve numerically, but very difficult task in general.

Code: OpenGR

http://wwwrel.ph.utexas.edu/openGR/

Nathaniel R. Stickley Methods of Computational Astrophysics

http://wwwrel.ph.utexas.edu/openGR/

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

The Second Approximation

Rather than solving the full GR field equations...

1 Linearize the field equations OR...

2 Generalize Newtonian gravitation in analogy with classical
electrodynamics

Both approaches yield similar results:

Contain signal-retardation effects, velocity-dependent forces
(gravimagnetic field), and radiation.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

The Second Approximation

Principal application: Celestial mechanics in the Solar System

Calculate trajectories of planets, comets, asteroids, moons

Calculate spacecraft trajectories with high precision (GPS, for
instance)

Create astronomical almanacs / ephemerides

Secondary: Detailed models of binary star systems, 3-star
interactions, other small systems.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

The Third Approximation

Remove explicit velocity-dependence from equations of motion:

Static limit of linearized GR.

Identical to Newtonian gravitation with finite signal speed.

Does not violate causality.

Less computationally expensive than linearized GR.

Requires position data to be stored for t = D/c where D is
size of simulation.

No known* codes use this method.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Direct N-Body

The 4th level of approximation: Use Newtonian gravitation

Assumes gravitation propagates with infinite speed.

Forces depend only on position.

Requires only the current position data to be stored in
memory.

Less computationally expensive than previously-described
methods, but still quite expensive...

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Direct N-Body

A note on scaling: Direct N-Body scales as N 2

For a simulation containing N bodies, there are N (N − 1)
force pairs.

Eliminating double-counting leaves 1
2N (N − 1) force

calculations of the form

Fij =
−Gmimj rij

r3
ij

In units for which G = 1, this is at least 3 multiplications and
1 exponentiation for each force calculation. (In practice, more
because of the 3-component vector)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Direct N-Body

A note on scaling (cont’d):

Example 1

A simulation using 100, 000 particles requires & 1.5GFlop per
time-step.

GFlop = Billion Floating point operations

Example 2

A simulation using 106 particles requires & 1 TFlop per time-step.

For a realistic galaxy, N ∼ 1011 − 1012, requiring ∼ 1011 TFlop per
time step for the force calculation.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Direct N-Body

A note on scaling (cont’d):

Example 1

A simulation using 100, 000 particles requires & 1.5GFlop per
time-step.

GFlop = Billion Floating point operations

Example 2

A simulation using 106 particles requires & 1 TFlop per time-step.

For a realistic galaxy, N ∼ 1011 − 1012, requiring ∼ 1011 TFlop per
time step for the force calculation.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Direct N-Body

A note on scaling (cont’d):

Example 1

A simulation using 100, 000 particles requires & 1.5GFlop per
time-step.

GFlop = Billion Floating point operations

Example 2

A simulation using 106 particles requires & 1 TFlop per time-step.

For a realistic galaxy, N ∼ 1011 − 1012, requiring ∼ 1011 TFlop per
time step for the force calculation.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Direct N-Body

For comparison: The current fastest computer, K Computer:

705,024 processing cores (+ Nvidia Tesla GPUs).

8.16 petaFlop/s (8.16× 103 TFlop/s).

∼ 4− 5 months for one iteration.

Visit http://www.top500.org for current list of the top 500
supercomputers in the world.

Comments:

Very computationally expensive.

Not practical for galaxy simulations.

Only used in very high resolution simulations of small systems
such as open clusters and globular clusters

Nathaniel R. Stickley Methods of Computational Astrophysics

http://www.top500.org

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Gravitational Softening

The Motivation:

Most of the computational effort in N-body simulations is
spent on binary stars and other close encounters between star
particles.

Close encounters drive two-body relaxation.

Solution: Prevent the formation of binary star systems and close
particle-particle encounters.

Replace point-particles with extended “fuzzy” particles.

Particles now represent small groups of stars rather than
single stars.

For short distances, replace Newtonian force with another
expression corresponding to extended objects.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Gravitational Softening

The Motivation:

Most of the computational effort in N-body simulations is
spent on binary stars and other close encounters between star
particles.

Close encounters drive two-body relaxation.

Solution: Prevent the formation of binary star systems and close
particle-particle encounters.

Replace point-particles with extended “fuzzy” particles.

Particles now represent small groups of stars rather than
single stars.

For short distances, replace Newtonian force with another
expression corresponding to extended objects.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Gravitational Softening

More Details:

Point particles are “smeared out” into sphere’s of radius ε. The
parameter ε is known as the softening length.

Examples of Softening Methods:

Plummer Softening

Replace
Gmimj rij

r3ij
with

Gmimj rij

(r2ij +ε2)
3/2

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Gravitational Softening

Plummer Softening Spline

Fij =

−
Gmimj rij

r3ij
for r > ε

− Gmimj rij

(r2ij +ε2)
3/2 for r ≤ ε

Note: this particular spline is discontinuous, but it works.

Other methods are also utilized, often incorporating Gaussians
and splines.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Gravitational Softening

Comments:

Detail about binaries is lost in the process of softening.

Softening length provides a resolution limit.

Allows for much higher performance than point-particle direct
N-body.

Scales as N 2, but now N represents groups of stars rather
than individual stars.

Practical for medium-to-low resolution simulations of clusters
and very high resolution simulations of small galaxies.

Too computationally expensive to be practical for simulations
of large galaxies and galaxy mergers.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Barnes-Hut Tree Method

The next approximation: Use the direct N-body method only
locally. Use multipole expansion for larger distances.

Steps:

1 Divide space into cubical regions.

2 Continue subdividing space until each cube only contains one
(or other small number) of particles.

3 Calculate the multipole expansion of the gravitational field for
each cube and sub-cube recursively.

4 Use direct N-body method for force due to nearest-neighbor
particles.

5 Use multipole expansions to calculate force due to distant
groups of particles.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Barnes-Hut Tree Method

Multipole expansion geometry:

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Barnes-Hut Tree Method

Monopole moment:

M =
∑
j

mj

Quadrupole moment tensor:

Qk` =
∑
j

mj

[
3 (rj − rcm)k (rj − rcm)` − δk` (rj − rcm)2

]
Defining x = r− rcm , the potential at point r is

Φ (r) = −G
[
M

|x|
+

1

2

Qk`x
kx `

|x|5

]
In some codes, only the monopole term is used.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Barnes-Hut Tree Method

Sub-diving space

Space is subdivided using a data structure called an Oct-tree, or
simply Octree. The octree efficiently lists:

which particles are located in each cube,

which sub-cubes are located within other sub-cubes,

which cubes are neighbors,

multipole moments for each sub-cube.

coordinates of the center of mass of each sub-cube.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Barnes-Hut Tree Method

Since 2-D is easier to represent graphically, I’ll explain quad-trees:

0 1

3 2

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Barnes-Hut Tree Method

The corresponding quad-tree

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Barnes-Hut Tree Method

A populated grid:

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Barnes-Hut Tree Method

We need to calculate forces using direct N-body method close to
each point and multipole approximations for larger distances. Thus
we need to:

Decide how to separate “local” from “distant” particles.

Decide how to ensure accuracy of multipole expansions while
minimizing the computational effort.

Intuitively, small volumes should be used near the particle of
interest and the size of the volumes can be larger as the separation
distance increases...

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Barnes-Hut Tree Method

For one particle:

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Barnes-Hut Tree Method

The process of calculating the forces and deciding how to
calculate forces is called “walking the tree”.

The “opening condition” tells us whether we need to descend
down a branch

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Barnes-Hut Tree Method

The most common opening condition:

The opening angle criterion is based on the approximate
angle subtended by the node.

θ ≡ d

r
≤ θc

d : dimension of the node (length of cube side).

r : distance to the cm of the node.

θc: critical opening angle.

Accuracy of the code is determined by θc. (smaller θc ⇒ less
error)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Barnes-Hut Tree Method

Comments:

Accuracy depends on opening condition.

For very strict opening conditions, tree method is identical to
direct N-body

Scales as N logN (assuming a reasonable opening condition)

For 106 particles, tree method requires ∼ 108Flop
The cost: much larger memory requirement
Greater code complexity

This is the method typically used for galaxy-scale and
cluster-scale simulations.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Particle-Mesh Method

An alternative approach: Recall that, for Newtonian gravity,

∇2Φ = 4πρ

Rather than calculating force at the location of each particle,
use this to calculate the acceleration field at each point on a
Cartesian mesh.

Interpolate acceleration values from the mesh to the position
of each particle.

If the number of mesh points Nm is much smaller than the
number of Particles N , this will lead to a significant increase
in efficiency.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Particle-Mesh Method

Basic procedure:

1 Convert discrete particle distribution to density function, ρ,
using interpolation.

2 Solve
∇2Φ = 4πρ

to obtain Φ at each mesh point.

3 Use finite difference method to compute acceleration at each
mesh point.

4 Transfer the acceleration field from the mesh points back to
particles using interpolation.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Particle-Mesh Method

Two common interpolation methods: Nearest-neighbor (NN)
and cloud-in-cell (CIC)

For NN mass - density interpolation (in 2-D), the density is
transferred to the mesh as follows:

Each particle of mass mj has a density contribution

ρj =
mj

h2

where h is the mesh spacing.

This contribution is added to the mesh point closest to the
particle.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Particle-Mesh Method

The CIC interpolation method is slightly more complicated, but
yields better results.

The coordinates of the
center of the cell i , j are
denoted (xi , yj)

The coordinates of a
particle, k (the blue dot)
are (xk , yk)

Define

∆ki ≡ xk−xi , ∆kj ≡ yk−yj

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Particle-Mesh Method

For particle of mass mk

located at (xk , yk), the
density is given by

ρij =
mk

h4
(h −∆ki) (h −∆kj)

ρi+1,j =
mk

h4
∆i (h −∆kj)

ρi ,j+1 =
mk

h4
(h −∆ki) ∆kj

ρi+1,j+1 =
mk

h4
∆ki∆kj

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Particle-Mesh Method

Compute Φ at the cell centers

There are many methods available. Some include:

Jacobi method

Gauss-Seidel

Successive over-relaxation

Fourier convolution

Most commonly used because of FFT performance

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Particle-Mesh Method

Compute g at cell centers

Calculate g = −∇Φ, or more explicitly, −
(
∂Φ
∂xi
, ∂Φ
∂yj
, ∂Φ
∂zk

)
at

cell centers using a finite difference method.

For instance, the centered difference:

∂Φ

∂xi
=

Φ (xi+1)− Φ (xi−1)

2h
+O(h3)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Particle-Mesh Method

Interpolate g from mesh to particles

For NN interpolation,
Fk = Fij

For the CIC interpolation,

Fk = κ1Fij + κ2Fi+1,j + κ3Fi ,j+1 + κ4Fi+1,j+1

κ1 = (h −∆ki) (h −∆kj)

κ2 = ∆ki (h −∆kj)

κ3 = (h −∆ki) (h −∆kj)

κ4 = ∆ki∆kj

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Particle-Mesh Method

Comments:

Scales as Nm logNm

Performance gain is large if Nm � N (i.e. many particles per
mesh point)

Resolution is limited by spacing h.

This is the method used for cosmological simulations of
large-scale structure formation.

Easy to incorporate periodic boundary conditions and
expansion.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Hybrid Methods

Because PM method has low-resolution accuracy, it is often
coupled with the direct N-body or hierarchical tree method to
achieve larger range of applicability.

basic principle: Separate potential into near-field and far-field
parts

Φ(r) = Φfar (r) + Φnear (r)

In Fourier space,

Φ̃(k) = Φ̃far (k) + Φ̃near (k)

−4πG ρ̃

k2
= −4πG ρ̃

k2
exp

(
k2r2

s

)
− 4πG ρ̃

k2

[
1− exp

(
k2r2

s

)]
Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Hybrid Methods

rs : distance scale which separates “far” from “near”.

The inverse Fourier transform of Φ̃near gives

Φnear (r) = −Gρ

r
erfc

(
− r

2rs

)

complementary error function

erfc(x) ≡ 1-erf(x) = 1− 2√
π

∫ x

0
e−τ

2
dτ =

2√
π

∫ ∞
x

e−τ
2
dτ

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Hybrid Methods

The near-field acceleration is then

gnear (r) = −Gρr

r3

[
erfc

(
− r

2rs

)
+

r

rs
√
π

exp

(
− r2

4r2
s

)]
This is calculated in real space using the Tree method or direct
N-body method. The result is added to the far-field result from the
PM method.

When tree method is used, this is called the TreePM method

When direct N-body is used, this is called the
particle-particle-particle mesh method (P3M)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Restricted N-body

The first groundbreaking galaxy simulation research used none of
these methods.

Toomre & Toomre, 1972 used the restricted N-body method:

Two massive particles interact gravitationally.

All other particles are massless “tracer” particles orbiting in the
gravitational field of the two massive particles.

Very fast! Scales as N .

Very limited realism, but still useful.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Time Integration

Now that we know how the forces / accelerations are calculated,
we need to know how to advance the particles forward in time.

First, let’s review the general procedure for calculating derivatives
and error terms numerically:

1 Write Taylor expansions of the function f (t) itself and shifted
expressions such as f (t ± δt) , f (t ± 2δt) , f

(
t ± 1

2δt
)
, · · ·

where δt is the step size.

2 Form linear combination of Taylor expansions to isolate the
desired derivative with the desired order of accuracy.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Example 1: Centered Difference f ′(t)

f (t + δt) = f (t) + δtf ′ (t) +
1

2
δt2f ′′ (t) +

1

6
δt3f (3)

(
τ+
)

f (t − δt) = f (t)− δtf ′ (t) +
1

2
δt2f ′′ (t)− 1

6
δt3f (3)

(
τ−
)

where τ± is between t and t ± δt .

Solving for f ′ (t),

f ′ (t) =
f (t + δt)− f (t − δt)

2δt
− 1

6
δt3f (3) (τ)

where t − δt ≤ τ ≤ t + δt .

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Example 2: Centered Difference f ′′(t)

f (t + δt) = f (t) + δtf ′ (t) +
1

2
δt2f ′′ (t) +

1

6
δt3f (3)

(
τ+
)

f (t − δt) = f (t)− δtf ′ (t) +
1

2
δt2f ′′ (t)− 1

6
δt3f (3)

(
τ−
)

solving for f ′′ (t),

f ′′ (t) =
f (t + δt)− 2f (t) + f (t − δt)

δt2
− 1

12
δt2f (4) (τ)

where τ± is between t and t ± δt , thus t − δt ≤ τ ≤ t + δt .

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Example 3: O(δt4) error f ′(t)

f (t ± δt) = f ± δtf ′ + 1

2
δt2f ′′ ± 1

6
δt3f (3) +

1

24
δt4f (4)

f (t ± 2δt) = f ± 2δtf ′ + 2δt2f ′′ ± 8

6
δt3f (3) +

16

24
δt4f (4)

solving for f ′ (t) while seeking O(δt4) error,

f ′ =
f (t + 2δt) + 8 [f (t + δt)− f (t − δt)]− f (t − 2δt)

12δt
+O(δt4)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Global Error

Error accumulates with each iteration. The accumulation is called
global error.

global error ∝ Niter × local error

=
T

δt
O (δtn) = TO

(
δtn−1

)
a method which is of order n per step is of order n − 1 when
iterated over time.

Knowing this helps us to decide on an appropriate time-step.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Euler Method

Steps:

vn+1 = vn + anδt

rn+1 = rn + vnδt

First-order globally, second order locally

poorly behaved

simplest method

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Midpoint Method

Steps:
vn+1 = vn + anδt

rn+1 = rn +
vn + vn+1

2
δt

The net result:

rn+1 = rn + vnδt +
1

2
anδt

2

Second-order globally

Velocity step is only first order

This is an example of a second order Runge-Kutta method.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Runge-Kutta 4 (RK4)

First, the compact form of the RK4 algorithm:

x is a vector of quantities being integrated.

f is the derivative of x with respect to the parameter t (not
necessarily time)

dx

dt
= f

The algorithm is

x (t + δt) = x (t) +
1

6
δt (F1 + 2F2 + 2F3 + F4)

...

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Runge-Kutta 4 (RK4)

x (t + δt) = x (t) +
1

6
(F1 + 2F2 + 2F3 + F4) δt

where

F1 = f (x, t)

F2 = f

(
x +

δt

2
F1, t +

1

2
δt

)
F3 = f

(
x +

δt

2
F2, t +

1

2
δt

)
F4 = f (x + δtF3, t + δt)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Runge-Kutta 4 (RK4)

written explicitly:

a(1) = ai = a(ri)

a(2) = a
(
ri + v(1)δt/2

)
a(3) = a

(
ri + v(2)δt/2

)
a(4) = a

(
ri + v(3)δt

)
v(1) = vi

v(2) = vi + a(1)δt/2

v(3) = vi + a(2)δt/2

v(4) = vi + a(3)δt

vi+1 = vi + 1
6

(
a(1) + 2a(2) + 2a(3) + a(4)

)
δt

ri+1 = ri + 1
6

(
v(1) + 2v(2) + 2v(3) + v(4)

)
δt

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Runge-Kutta 4 (RK4)

Comments:

4th order accuracy for relatively little effort.

By far, the most commonly used ODE solver for
general-purpose use.

NOT used for calculating orbits!

Does not conserve energy when calculating orbits.
Requires 4 acceleration evaluations per time-step!

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Leap-Frog Method

Using the centered difference, compute acceleration at time t ,

a (r (t)) =
v (t + δt)− v (t − δt)

2δt
+O

(
δt2
)

and the velocity at time t + δt ,

v (t + δt) =
r (t + 2δt)− r (t)

2δt
+O

(
δt2
)

Then rearrange terms so that future values are on the left

v (t + δt) = v (t − δt) + 2a (r (t)) δt +O
(
δt3
)

r (t + 2δt) = r (t) + 2v (t + δt) δt +O
(
δt3
)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Leap-Frog Method

Using index notation,

vi+1 = vi−1 + 2aiδt +O
(
δt3
)

ri+2 = ri + 2vi+1δt +O
(
δt3
)

This is sometimes written as

vi+ 1
2

= vi− 1
2

+ aiδt +O
(
δt3
)

ri+1 = ri + vi+ 1
2
δt +O

(
δt3
)

and other ways...

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Leap-Frog Method

drift-kick-drift version:

ri+ 1
2

= ri + vi
δt
2

vi+1 = vi + ai+ 1
2
δt

ri+1 = ri+ 1
2

+ vi+1
δt
2

where
ai+ 1

2
= a

(
ri+ 1

2

)

kick-drift-kick version:

vi+ 1
2

= vi + ai
δt
2

ri+1 = ri + vi+ 1
2
δt

vi+1 = vi+ 1
2

+ ai+1
δt
2

where
ai+1 = a (ri+1)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Leap-Frog Method

Comments:

Even though it is only second order, Leap-Frog yields better
results than RK4!

Leap-frog method conserves energy because it is symmetric
in time (It is symplectic. See Springel notes for more details)

Kick-drift-kick form is more stable than drift-kick-drift when
using variable step sizes; it is the most symmetric form in that
case.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Comparison of Methods

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Choosing a Step Size

In practice, adaptive step sizes must be used to assure desired
accuracy

In general, larger accelerations require smaller step sizes.

One acceleration-based choice:

δt = fs,a

√
ε

|a|

where fs,a < 1 is a “safety factor” determined from numerical
experimentation.

It’s also a good idea to keep particles from moving too far
during one time step. . .

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Choosing a Step Size

An upper-limit on step size:

δt = fs,v
ε

|v|
=

dmax

|v|

Where fs,v is another experimentally-determined constant factor.
This keeps the particle from drifting farther than dmax during one
time step.

But how are fs,a and fs,v experimentally chosen? . . .

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Choosing a Step Size

The accuracy of the integration code can be tested in several ways:

by comparison with analytic solutions of orbital trajectories
(for simple 2 particle test systems)

by comparison with very high resolution simulation (in the
limit as δt → 0, the solution is exact—within machine
precision)

by testing for conservation of energy, linear momentum, and
angular momentum

Based on the results from these tests, one can determine values of
fs,a and/or fs,v which yield the desired solution accuracy.

Adaptive step sizes lead to a new problem in N-body simulations:
synchronization. . .

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Synchronization

There is a large range of acceleration values in an N-body
code.

This implies a large range of optimal step-sizes.

System must remain synchronized.

problem:

The simple solution is to use the minimum time step globally.

if one particle in the simulation experiences a large
acceleration, all other particles are integrated with small times.
VERY inefficient!

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

Synchronization

Solution:

Create hierarchy of step sizes.

common choice: choose step sizes as a power of 2 times the
smallest required step size.

Evolve highest-acceleration / smallest step size particles
forward for, 2n iterations, then evolve next-smallest time steps
and so on until the largest step sizes are advanced.

Then repeat

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Outline
1 N-body Methods

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

2 Fluid Dynamics & Other Physics
Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

3 High-Performance Computing
Microarchitecture
Vectorization & Parallelization
Optimization
Productivity Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Fluid Dynamics & Other Physics

Galaxies are more than systems of gravitationally-bound stars.
Other constituents are very important.

gas, plasma, dust
magnetic fields, EM radiation

Stars evolve with time. Simulations should include

Stellar formation
Stellar mass loss/gain
Stellar death

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Fluid Quantities

ρ: mass density
n: particle number density
v: velocity
ρv: momentum density
s: specific entropy

ε = CvT : specific energy
density

E = ρε+ 1
2ρv

2 : total energy
density

V : volume
T : temperature
p : pressure
Cv : specific heat, constant V
Cp : specific heat, constant p
γ = Cp/Cv : adiabatic index
cs =

√
γp/ρ: speed of sound

µ: dynamic viscosity
ν = µ/ρ: kinematic viscosity

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Viscosity

Viscosity is a measure of
fluid friction.

stress: force per unit area.

For shear stress, τ ,
surface is parallel to force.

Assume: fluid is
stationary with respect to
surface.

boundary plate (2D, stationary)

velocity, u

fluid

y dimension

boundary plate
 (2D, moving)

gradient,

τ = µ
du

dy

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Fluid Shocks

Shock: A very thin region over which fluid pressure, velocity
(and/or temperature) change significantly.

Often associated with (caused by) super-sonic flow.

If fluid is viscous, shocks have finite width.

For inviscid fluids, shocks can be modeled analytically as
infinitesimally thin sheets / boundaries.

Shocks are irreversible in time: entropy increases.

Examples: Sonic “boom”, Thunder, Blast fronts (from explosions),
bow shock, collisions of molecular clouds.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Contact Discontinuity

Contact Discontinuity: A very thin region over which fluid
density and temperature change significantly (essentially
discontinuously).

Pressure is continuous across a contact discontinuity.

There is no particle transport across (normal to) the
discontinuity.

If the tangential velocity is discontinuous, it is classified as a
slip discontinuity.

Examples: The boundary between a supersonic jet and
surrounding air (rocket engine exhaust), a planetary magnetopause

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Fluid Equations

Navier-Stokes:

Best available description of un-charged fluids.

Includes conservation of mass, energy & momentum.

Includes frictional forces (viscosity).

Magnetohydrodynamics (MHD):

Couples Navier-Stokes with Maxwell equations

Describes plasmas and other conducting fluids (e.g. liquid
metals, ocean water).

Euler:

Similar to Navier-Stokes, but for inviscid fluids.

Conserves mass, energy, & momentum.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Review: Continuity / Conservation

Differential form of the continuity equation:

∂f

∂t
+∇ · f v = σ

Where σ is a source/sink term. σ = 0 implies the conservation of
the quantity f .

The integral form:

∂

∂t

∫
V
fdV +

∫
V
∇ · f vdV = Σ

∂

∂t

∫
V
fdV +

∫
S
f v · dS = Σ

where Σ =
∫
V σdV .

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

The Euler Equations

Conservation of mass:

∂ρ

∂t
+∇ · (ρv) = 0

Conservation of momentum:

∂ρv

∂t
+ (v · ∇) ρv = ∇ · σ̄

Where σ̄ is the stress tensor. Assuming there are no shear
stresses (i.e. no viscosity) and no body forces,(

∂

∂t
+ v · ∇

)
ρv = −∇p

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

The “convective derivative” or “material derivative” is defined as

D

Dt
≡ ∂

∂t
+ v · ∇

Using this, momentum conservation is

Dρv

Dt
+∇p = 0

This is simply F = ma

Conservation of energy:

∂E

∂t
+∇ · (E + p)v = 0

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Computation-ready Euler Equations

∂m

∂t
+
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

= 0

m =

[
ρ
ρẋ
ρẏ
ρż
E

]
, fx =

[ρẋ

p + ρẋ2

ρẋ ẏ
ρẋ ż

(E + p) ẋ

]
, fy =

[ρẏ
ρẋ ẏ

p + ρẏ2

ρẏ ż
(E + p) ẏ

]
, fz =

[ρż
ρẋ ż
ρẏ ż

p + ρż2

(E + p) ż

]

close the equations with

p = ρε (γ − 1)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Mesh-based Eulerian Methods

Some vocabulary

Mesh-based method: Uses a mesh / grid to discritize the fluid.

Eulerian method: Fluid quantities are stored at fixed points.
Fluid passes by the points.

Lagrangian method: Fluid quantities are stored at points which
flow with the fluid.

We will briefly overview the following mesh-based, Eulerian
methods:

Finite Difference (FDM)

Finite Volume (FVM)

Finite Element (FEM)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Finite Difference Method

In general terms, FDM methods use finite differencing to calculate
derivatives on structured meshes.

Structured meshes have a regular connectivity pattern. For
FDM, the meshes are generally orthogonal or warped
orthogonal grids.

Continuum quantities are usually stored at the nodes of the
mesh–sometimes the cell centers.

Linear algebra (and other) routines are used to solve the
PDEs.

FDM is restrictive because the mesh has to be structured.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Unstructured Meshes

More versatile.

There is no fixed
connectivity pattern.

Connectivity information
is stored in data
structures.

Mesh cells can be added /
removed as needed.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Finite Volume Method

If we write the equations in explicitly conservative integral form,
the fluid equations are solved easily. In particular, the integral form
of the Euler equations:

∂

∂t

∫
V
mdV = −

∫
S
f · dS

Divide space into finite volumes using unstructured mesh.

Store fluid quantities in centers of volumes.

Assume the quantities are piecewise constant.

The integral equation above is approximated by∑
j

∂

∂t
mjVj = −

∑
i

fij · Si

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Finite Volume Method

∑
j

∂

∂t
mjVj = −

∑
i

fij · Sij

Sij is the area of the ith face of the j th volume element.

fij is the vector of flux densities (calculated as the average of
f on either side of the face i , j)

Use Runge-Kutta to solve the differential equations.

This procedure is only accurate to first order.

Higher order accuracy can be obtained using a trick...

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Finite Volume Method

Riemann solver:

The Riemann problem consists of two piecewise constant
fluids in contact.

This is identical to the case of the interface between finite
volume cells.

There is an exact, analytic solution to the Riemann problem.

Exact solution can be used to determine how the fluid evolves
with time.

Implementing this in FVM leads to first-order accuracy.

But, we can improve this...

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Finite Volume Method

Piecewise Parabolic Method
(PPM):

Reconstruct fluid variables
in each volume using
quadratic interpolation
from surrounding
volumes.

Calculate fluxes at
boundaries using
interpolation.

Fluxes at edges are input
into a Riemann solver.

Third order accuracy!

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Finite Element Method

Rather than storing fluid quantities as piecewise constant, use
interpolating functions in each cell.

Analogy with integration methods:

FVM is analogous to midpoint rule for numerical integration:

FEM is analogous to trapezoid rule or Simpson’s rule:

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Finite Element Method

Quantities are interpolated in each element using the
expansion

f (r) ≈
∑
k

fkwk (r)

fk are weights,wk (r) are basis functions or “shape functions”.

Using the expansion, the system of PDEs is approximated by a
system of ODEs.

Solve using linear algebra routines for systems of ODEs.

Higher order shape functions lead to higher order accuracy.

Second and third order solutions are relatively easy to obtain.

Standard method for state of the art engineering codes.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Limitations

Problems with mesh-based Eulerian methods:

Interfaces between different fluids (e.g. liquid-gas) are
difficult.

Gas-vacuum boundaries are inefficiently calculated.

Adaptive mesh refinement required for large dynamic range.

Methods are not Galilean-invariant, thus flows are often
supersonic through mesh.

Over-mixing causes spurious entropy creation.

Self-gravitating fluids are difficult to model.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Lagrangian Methods

The main idea: Sample fluid properties using points which move
with the bulk flow of the fluid.

Galilean invariance is achieved.

Self-gravitation can be included more easily.

We will discuss two approaches:

Meshless method: Smoothed-Particle Hydrodynamics (SPH).

Mesh-based methods: The moving mesh

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

SPH

Basic principle:

Fluid quantities are
sampled at discrete points
with fixed mass.

Particles move with the
bulk flow of the fluid.

Particles are smoothed
over spherical regions of
radius h, called
“smoothing length”.

Particles are required to
overlap.

Specify minimum number
of required overlaps, then
scale h.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Basic Formulation

Start with the trivial identity:

A(r) =

∫
A(r′)δ

(
r− r′

)
dr′

This can be approximated

〈A(r)〉 ≈
∫

A(r′)w
(
r− r′, h

)
dr′

where the smoothing kernel w(r , h) obeys∫
w(r , h)dV = 1

and
lim
h→0

w(r , h) −→ δ (r)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

〈A(r)〉 ≈
∫

A(r′)w
(
r− r′, h

)
dr′

=

∫
A(r′)

ρ (r′)
ρ
(
r′
)
w
(
r− r′, h

)
dr′

This is approximated as

〈A(ri)〉 ≈
∑
j

[ρ (rj)Vj]
A (rj)

ρ (rj)
w (ri − rj , h)

=
∑
j

mj
Aj

ρj
w (ri − rj , h)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

We arrive at the approximation

〈A(ri)〉 ≈
∑
j

mj
Aj

ρj
w (ri − rj , h)

this is analogous to FEM expansion in terms of shape functions.

Example: calculate 〈ρ(ri)〉

〈ρ(ri)〉 ≈
∑
j

mj
ρj
ρj

w (ri − rj , h) =
∑
j

mjw (ri − rj , h)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Example: calculate 〈vi〉

〈vi〉 ≈
∑
j

mj

ρj
vjw (ri − rj , h)

Gradient and divergence are approximated by returning to integral
formulation, using integration by parts and vector identities to
manipulate the expressions. The results are:

∇A(ri) ≈ 〈∇A(ri)〉 ≈
∑
j

mj
Aj

ρj
∇iw (ri − rj , h)

∇ · vi ≈
1

ρi

∑
j

mj

ρj
(vi − vj) · ∇iw (ri − rj , h)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Gather vs. Scatter

Smoothing kernels must
overlap.

Require minimum number
of overlapping neighbors.

This implies that the
smoothing length can
vary.

There are two ways to
interpret SPH: Gather and
Scatter.

Gather and scatter
interpretations lead to
different scaling condition
for h

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Gather vs. Scatter

A(ri)g ≈
∑

j mj
Aj

ρj
w (ri − rj , hi) A(ri)s ≈

∑
j mj

Aj

ρj
w (ri − rj , hj)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Symmetrized version

Gather and scatter are both third-order methods.

The symmetrized version gives somewhat better results:

A(ri)sym ≈
∑
j

mj
Aj

ρj

1

2
[w (ri − rj , hj) + w (ri − rj , hi)]

But still does not conserve energy and entropy simultaneously.

For a fully-conservative adaptive smoothing scheme, see
Springel notes.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Comments on SPH

Advantages:

Galilean invariant

Mass is automatically conserved.

Handles fluid-fluid and fluid-vacuum interfaces naturally.

Does not waste computational effort on voids/vacuum.

Disadvantages:

Does not handle fluid shocks well

Tends to dampen fluid instabilities†

Relies heavily on artificial viscosity†

† see next four pages.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Fluid Instability

Non-linear effects sometimes associated with positive feedback
loop.

Examples:

Kelvin-Helmholtz instability

Rayleigh-Taylor instability

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Kelvin-Helmholtz Instability

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Rayleigh-Taylor Instability

AKA “fingering instability”: A low-density fluid pushes on a higher
density fluid.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Artificial Viscosity

Shocks in frictionless fluids can be arbitrarily thin. This can
lead to unphysical singularities, overshoots, & oscillations.

In real fluids, viscosity converts bulk kinetic energy into
thermal energy at a shock.

Real shocks have finite thickness...no singularities etc.

Artificial viscosity terms are introduced to simulate the effects
of real viscosity; Entropy is artificially added to simulate the
actual increase of entropy at a shock.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Lagrangian Mesh

Idea: Combine the best features of mesh-based methods and SPH.

Space is discretized using a mesh–no overlapping cells.

Mesh elements move with fluid.

Mesh elements can change size as fluid expands or contracts.

Use finite volume method with Riemann solver for high-order
accuracy.

Result:

Code retains almost all of the advantages of SPH.

Handles shocks/instabilities without need for artificial
viscosity.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Lagrangian Mesh

Arepo: http://www.mpa-garching.mpg.de/~volker/arepo

Nathaniel R. Stickley Methods of Computational Astrophysics

http://www.mpa-garching.mpg.de/~volker/arepo

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Combining CFD & Gravity

We must incorporate gravitational forces & potential into CFD.
Momentum & energy conservation need to be modified.

Conservation of mass: (Unchanged)

∂ρ

∂t
+∇ · (ρv) = 0

Conservation of momentum:(
∂

∂t
+ v · ∇

)
ρv +∇p = −ρ∇Φ

Conservation of energy:

∂E

∂t
+∇ · (E + p)v = −ρv · ∇Φ

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Combining CFD & Gravity

Fluid, stellar, & dark matter particles interact as
gravitationally-softened particles.

Force and potential are calculated using N-body methods.

Gravitational force / potential is included in CFD code.

Particles in system are stepped forward in time.

Fluid properties are stepped forward in time.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

CFD Timestep Size

For a CFD simulation, the maximum timestep size is given by the
Courant–Friedrichs–Lewy (CFL) condition.

δtmax = CCFL
L

(vmax + cs)

δtmax : maximum allowed timestep.
L : Characteristic length (smallest dimension) of fluid element.
vmax : fastest possible bulk velocity within fluid element.
cs : speed of sound.
CCFL: Safety factor. CCFL < 1.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Maximum Step Size

For Lagrangian methods, vmax is negligible because volumes
flow with bulk velocity of fluid.

Thus another advantage of Lagrangian codes: larger
timesteps.

When combining CFD with gravitation, step size is limited by
smallest of the two steps:

δtmax = min (δtgrav , δtCFL)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Microphysics & Feedback

Other phenomena must be included:

Gas & dust cooling + chemical reactions

Magnetohydrodynamics

Stellar formation / evolution / winds

Supernova feedback

AGN feedback

* Most of these are poorly understood.
*All are beyond the resolution of galaxy models.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Sub-resolution methods

Analytic approximations and empirical formulas are used to
approximate the unresolvable physics. The details of the methods
differ greatly, but in general...

Cooling and coupling to EM radiation can be achieved by
adding terms to energy and momentum equations.

Stars can gain and lose mass with time. Mass is added /
subtracted from gas particles and star particles.

Stellar formation is based on empirical models (IMF) and fluid
density and temperature conditions.

SMBHs are treated as mass sinks.

SMBH accretion rate is calculated using semi-analytic
expression.

AGN luminosity and SED is based on accretion rate and
empirical relation respectively.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Sub-resolution methods

SN explosions...

add mass source term to the fluid equations(ISM).
inject energy to the surrounding; add source of E equation.
transfer momentum to ISM; add source to p equation.

Starbursts also heat and transfer momentum to ISM.

add source terms to E and p.

Sample: Bondi-Hoyle-Lyttleton BH accretion rate

Ṁ = 4παG2M 2ρ

(c2s +v2
∞)3/2

limited by ṀEdd .

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Initialization

There are several methods of initializing galaxies. Here’s one
method for spiral galaxies:

Choose disk scale length, D , bulge scale length, b, dark
matter halo scale size a, dark matter mass Mdm , stellar mass
in disk, M∗, stellar mass in bulge, Mb , mass of gas Mg , disk
scale height, z0.

Use the spherical dark matter density profile:

ρdm (r) =
Mdm

2π

a

r (r + a)3

Cylindrical stellar mass distribution in disk:

ρ∗ (r , z) =
M∗

4πD2
exp (−r/D) sech

(
z

2z0

)
Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Initialization

Spherical distribution of stars in bulge:

ρb (r) =
Mb

2π

b

r (r + b)3

Cylindrical gas distribution in the disk:

Σg (r) =
Mg

2πD2
exp (−r/D)

Determine vertical profile of gas in the disk from hydrostatic
equilibrium:

1

ρg

∂p

∂z
+
∂Φ

∂z
= 0

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Initialization

Choose mass / particle distribution for stellar particles.

Solve the Jeans equations to find the kinematic structure for
stable disk (see Binney & Tremaine).

Sample the resulting distribution function randomly.

Other options:

Reconstruct galaxy from observational data.

Initialize galaxy using output of cosmological structure
formation simulation.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Initialization

Initializing cosmological simulations: Several options are
available. One popular method is called “making glass”...

Begin with a randomly sampled Poisson distribution:

f (n, λ) =
λne−λ

n!

Run simulation with repulsive gravity and no feedback
mechanisms.

Resulting distribution is reminiscent of particle distribution in glass.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Some Codes

GADGET-2: SPH, TreePM (monopole), public, feedback is not
included by default.
GADGET-3: SPH, TreePM, not-public, full physics, more efficient
code (cited as GADGET-2).
FLASH: AMR, PPM Riemann, MHD, PM (mostly for stellar-scale
simulations).
Enzo: AMR, PPM Riemann, PM, radiative transfer, MHD, some
chemistry. Public (UCSD).
Gasoline: SPH, Tree (hexadecapole), some extra physics is
included (e.g. cooling).
Arepo: Lagrangian mesh, PPM Riemann, TreePM (monopole).
Athena: AMR, PPM Riemann, PM, detailed MHD.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Testing for accuracy & precision

Fluid codes are validated by:

Comparing simulation results with standard analytic solutions:
(e.g. shock tubes, Prandtl-Meyer expansion wave, laminar
flow over a circular cylinder, Sedov-Taylor point explosion)

Comparing simulation results from previously validated codes
(on a problem that both codes are capable of solving)

To determine precision & accuracy of galaxy simulations,

Take into account the fundamental accuracy of the code,
based on the above methods.

Run simulations at higher resolutions to characterize scaling
with mesh size / smoothing (h), softening (ε), and N .

Compare results with observations of real systems.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

Testing for accuracy & precision

A note on shot noise / particle noise:

When measuring physical quantities such as velocity dispersion,
mass density, and energy density in particle-based simulations,
there is random noise in the measurement—just as is the case
when observing objects with a finite number of photons.

The “signal uncertainty”, σq scales as

σq ∝ 1/
√
N

σq is the standard deviation of the quantity q which can be
determined by making many measurements of q (from
different directions, at different times, in different locations,
etc., depending on the details of the simulation)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Outline
1 N-body Methods

The Problem
Direct N-body
Barnes-Hut
Particle-Mesh
Time Integration

2 Fluid Dynamics & Other Physics
Basic introduction
Euler methods
Lagrangian Methods
Synthesis & Feedback

3 High-Performance Computing
Microarchitecture
Vectorization & Parallelization
Optimization
Productivity Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

System Architecture

In order to implement the algorithms previously presented, one
needs to know something about computers.

Five main components:

Input

Memory

Communications system

Processor

Output

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

System Architecture

Input: Computer needs instructions from the outside world.

Keyboard

Cameras

Microphones

Disk

Other computers (network)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

System Architecture

Output: Computer needs to communicate results with the outside
world.

Monitors

Speakers

Printers

Actuators

Disk

Other computers (network)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

System Architecture

Memory: Computer needs to store data. Basic principle: larger
storage is slower and less expensive.

HDD / SSD:

Non-volatile

least expensive per byte

Slowest transfer rates (∼10MB/s – 1000MB/s)

Highest capacity (∼TB)

Highest latency (∼10µs - ∼1ms)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Memory

System memory: compared to HDD / SDD...

More expensive per byte

Lower density

Smaller capacity (∼GB)

Volatile

Faster transfer rates (∼1GB/s – ∼10GB/s)

Lower latency (∼ns)

Connected to processor more directly

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Memory

Cache memory: compared to system memory...

much more expensive per byte

modern caches are integrated into the processor die

3 levels, in order of decreasing latency & capacity:

L3: largest (2-20MB), shared among several processors∗.
L2: smaller (0.5-2MB) dedicated to one processor.
L1: smallest (0.25-1MB) very close to execution units.†

Very high transfer rates (∼100GB/s – 1TB/s).

† Subdivided into Instruction and Data caches. ∗ by “processor,” I
mean a CPU “core.”

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Memory

Register memory:

Smallest (. 1kB)

lowest latency (typically 0-3 clock cycles)

integrated into the execution units

Note: In C/C++, use the register keyword to request that loop
counters and similar quantities to be stored in CPU registers.

register int variable_name

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Central Processing Units

Processor: performs integer and floating point arithmetic and
Boolean logic

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Opteron (AMD k8 “Sledgehammer” microarchitecture)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Multicore CPU

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Phenom II Hexacore (k10 “Thuban” microarchitecture)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Vector vs. Scalar

Two extremes: scalar vs. vector processing

Scalar processors

Input: 1 instruction and 1 or 2 scalar numbers.

Output: 1 scalar number.

This is done at most once each clock cycle.

Example

3 + 1 = 4

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Vector processors

Vector processors

Input: 1 instruction and n or 2n scalar numbers.

Output: n scalars

This is executed in 1 clock cycle.

Several clock cycles are required to set up the calculation.

Example 1 
1
5
...
xn

+


3
2
...
yn

 =


4
7
...

xn + yn


Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Vector processors

Example 2 
1
5
...
xn

×


3
2
...
yn

 =


3
10
...

xnyn


No advantage over scalar processors for many tasks.

Large performance advantage if application is vectorizable and
n is sufficiently large.

Depending on chip design,
n = 64, 128, 256, 512, 1024, 2048...64, 000.

*The majority of modern general-purpose processors are neither
scalar nor vector!

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Hybrid Schemes

Two concepts: Superscalar & SIMD

Superscalar processors:

Multiple functional units (ALUs, AGUs, FPUs), coupled with

Advanced control hardware allows

Out of order (OOO) execution
Speculative execution
Symmetric Multi-threading

Superscalar processors typically also include:

Execution pipelining

Branch prediction

Pre-fetching

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Superscalar processors (cont’d)

As a result,

Superscalar processors can execute multiple instructions per
clock cycle.

Efficiently perform a wide range of tasks well (much faster
than a scalar CPU).

Most general-purpose processors are superscalar (All x86 chips
since mid 1990’s)

Still not as fast as vector processors for specific tasks...

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

SIMD

Single Instruction, Multiple Data (SIMD)

Similar to vector processors, but vector length is very short

Typically n = 4

Faster than superscalar processor on vectorizable code (unless
nSIMD ≤ nSS)

More complicated to implement code: requires extra syntax
and extra thought (although optimizing compilers can
automatically generate code).

Common SIMD Instruction sets (for AMD and Intel processors):

MMX

3D Now!, Extended 3DNow!

SSE, SSE2, SSE3, SSE4, SSSE3, AVX, and soon AVX2

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Further hybridization

Modern mainstream PC and server processors are hybrids

Superscalar

Contain Integer and FP SIMD units

Multicore (more on this later)

What’s next?

SIMD units are beginning to resemble vector processors
(larger n)

Number of cores per CPU increases > 16

Superscalar processors are being combined with stream
processors. (more on that later)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Code Vectorization

Vectorization works well for problems which involve performing the
same operations on many pieces of data.

Examples:

multiplying an array by a scalar: F = ma

adding two arrays of scalars: F = F1 + F2

adding the constant 5 to an array of scalars: B = A + 5I

Pseudocode:

Scalar

for(i=0;i<n;i++){
z.v[i]=w.v[i]*u.v[i]+r.v[i];
}

Vector

z.v = w.v * u.v + r.v;

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Code Vectorization

Details:

For Matlab / Octave

Vectorized code runs faster than using for loops even though
these languages are interpreted rather than compiled.

Addition, subtraction, and scalar multiplication syntax is
intuitive.

For other operations, use the dot along with an operator
rather than writing for loops.

element-wise multiplication: u.*v
element-wise division: u./v
element-wise exponentiation: u.^3

For other operations, see the Matlab vectorization guide.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Code Vectorization

For C/C++

Vector instructions are implemented via SIMD instruction sets.

See compiler documentation for syntax.

For the popular GNU Compiler Collection (GCC), refer to
http://gcc.gnu.org/onlinedocs/

Refer to a SIMD programming reference from AMD or Intel
website.

Good optimizing compilers automatically generate SIMD
instructions in trivial situations. For GCC, use

-O2 or -O3 and -march=native

Nathaniel R. Stickley Methods of Computational Astrophysics

http://gcc.gnu.org/onlinedocs/

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Parallelization

Multiple processors share the processing load.

Break problem into discrete, (temporarily) independent pieces.

Rather than performing the same instructions simultaneously
on a single processor as in SIMD/Vector processing, perform
different instructions on different processors (MIMD).

Examples

Encode / decode multiple files simultaneously.

Edit frames of a video or large numbers of images
simultaneously.

Calculate gravitational forces for multiple particles / regions
simultaneously.

Advance multiple particles / regions forward in time
simultaneously.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Shared Memory

Each processor has access to the entire memory address space.

Advantages

Easy to program

High memory bandwidth

Low memory latency

Disadvantages

Large systems are very
expensive.

Must be careful to avoid race
condition errors.

Code Implementation

OpenMP, POSIX (p)threads

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Shared Memory: SMP vs. NUMA

SMP: Symmetric Multiprocessing

All processor cores have equal access to shared memory.

Typically the processor cores share a memory controller / bus.

Multi-core, single chip processor packages (like the ones in
most laptops, desktops, and smart phones).

NUMA: Non-Uniform Memory Access

Individual cores are assigned only a portion of the shared
memory.

Cores must request to read/write from/to memory addresses
that “belong” to other cores.

Processors either share a PCB or have a very fast, low-latency
interconnect.

Multi-chip, multi-socket systems like servers, workstations,
supercomputer nodes.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Shared Memory: SMP vs. NUMA

SMP: Symmetric Multiprocessing

All processor cores have equal access to shared memory.

Typically the processor cores share a memory controller / bus.

Multi-core, single chip processor packages (like the ones in
most laptops, desktops, and smart phones).

NUMA: Non-Uniform Memory Access

Individual cores are assigned only a portion of the shared
memory.

Cores must request to read/write from/to memory addresses
that “belong” to other cores.

Processors either share a PCB or have a very fast, low-latency
interconnect.

Multi-chip, multi-socket systems like servers, workstations,
supercomputer nodes.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Shared Memory: OpenMP

OpenMP code example:

unsigned int part;
float vx,vy,vz,v2, K=0;

#pragma omp parallel for schedule(dynamic) default(shared) \
private(vx,vy,vz,v2,part) reduction(+:K)

for (part=0; part<N; part++)
{

vx=v[3*part]; //store velocity of "part"
vy=v[3*part+1];
vz=v[3*part+2];
v2=vx*vx+vy*vy+vz*vz; //v^2
v2*=0.5*mass[part];
K+=v2; //the kinetic energy

}

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Distributed (private) Memory

Each processor has its own private memory address space

Processors must communicate
in order to share data.

There are many different
communication schemes.

Point-to-point:

Switching Network:

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Distributed Memory

Advantages

Systems are relatively inexpensive.

Systems can easily scale to very large sizes.

Race condition / memory conflicts are not an issue.

Disadvantages

High memory latency / low bandwidth when communicating
between processors.

Requires more thought about memory management /
communication.

Makes parallelization more difficult in some cases.

Software development progresses slowly.

Code Implementation

MPI (Message Passing Interface)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

MPI Pseudo Example

MPI::Init (argc, argv); // start MPI. The following code will run on all threads:

p = MPI::COMM_WORLD.Get_size (); // Get the number of processes.
id = MPI::COMM_WORLD.Get_rank (); // Get the individual process ID.

// send from 0 to all

if (id == 0) MPI::COMM_WORLD.Send (&message, count, date_type, destination, tag);

// receive from 0
if (id > 0) MPI::COMM_WORLD.Recv (&message, count, data_type, source, tag, status);

MPI::Finalize (); // stop MPI

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Stream Processors

Idea:

Combine many SIMD processors in parallel on a single chip

Use minimal control hardware (rely on programmer and
compiler)

Stream processors are massively parallel. Some contain hundreds
of SIMD units.

Cell processor

General purpose graphics processing units (GPGPUs)

nVidia: Geforce, Quadro, Tesla
AMD: Radeon, FireGL, FirePro

Languages

nVidia: CUDA, OpenCL
AMD: OpenCL

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

A New Standard: OpenACC

As of November 2011, a new API is available for using GPGPUs:
OpenACC

Rather than writing low-level CUDA or OpenCL code, the compiler
will automatically generate GPGPU code based on compiler
directives very much like OpenMP:

#pragma acc directive-name [clause [[,] clause]...]

Not yet supported by any compilers. Support is planned for PGI,
Cray, and CAPS compilers

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

More Hybrids

In practice...

High-performance codes use vectorization and parallelization
simultaneously

Stream processors take this idea to the extreme

A mixture of shared and distributed memory systems is used
in most supercomputers:

Each compute node is a (NUMA+SMP) shared memory
system

Example: A multi-socket motherboard with multiple
multi-core processor packages and a GPGPU

Compute nodes are networked together using a high-speed
interconnect

Interconnect examples: Gigabit Ethernet, Infiniband, Myrinet

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Optimization

Basic concept:

The performance of a computer is limited by its slowest
components.

The performance of an algorithm is limited by its slowest step.

Thus:

Avoid using the slowest hardware components when possible.

when slow components cannot be avoided, use them efficiently.

Identify slow / inefficient pieces of code using benchmarking.

Focus effort on optimizing the slowest operations.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Optimization

Basic concept:

The performance of a computer is limited by its slowest
components.

The performance of an algorithm is limited by its slowest step.

Thus:

Avoid using the slowest hardware components when possible.

when slow components cannot be avoided, use them efficiently.

Identify slow / inefficient pieces of code using benchmarking.

Focus effort on optimizing the slowest operations.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Optimization

Basic concept:

The performance of a computer is limited by its slowest
components.

The performance of an algorithm is limited by its slowest step.

Thus:

Avoid using the slowest hardware components when possible.

when slow components cannot be avoided, use them efficiently.

Identify slow / inefficient pieces of code using benchmarking.

Focus effort on optimizing the slowest operations.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Hardware Bottlenecks

Main hardware bottlenecks:

System memory

high latency
low bandwidth

Inter-processor & inter-node communication

high latency
low bandwidth
significant problem with distributed memory systems

When you must use these, do so wisely!

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficient use of Memory

Store data compactly (bit-fields, bit arrays, & unions can help)

Do not store unnecessary results

Use register keyword where appropriate

Principles to remember:

sequential data is often accessed faster than non-sequential
data (remember, the pre-fetch is not psychic)

localized data is often accessed faster than fragmented data

Implications:

sorting algorithms (e.g. quicksort) can sometimes improve
execution efficiency

physical objects which are spatially close should be kept close
in memory.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficient use of Memory

Store data compactly (bit-fields, bit arrays, & unions can help)

Do not store unnecessary results

Use register keyword where appropriate

Principles to remember:

sequential data is often accessed faster than non-sequential
data (remember, the pre-fetch is not psychic)

localized data is often accessed faster than fragmented data

Implications:

sorting algorithms (e.g. quicksort) can sometimes improve
execution efficiency

physical objects which are spatially close should be kept close
in memory.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficient use of Memory

Store data compactly (bit-fields, bit arrays, & unions can help)

Do not store unnecessary results

Use register keyword where appropriate

Principles to remember:

sequential data is often accessed faster than non-sequential
data (remember, the pre-fetch is not psychic)

localized data is often accessed faster than fragmented data

Implications:

sorting algorithms (e.g. quicksort) can sometimes improve
execution efficiency

physical objects which are spatially close should be kept close
in memory.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficient use of Memory

Be aware of the difference between Row-major order vs.
column-major order when using arrays:[

1 2 3
4 5 6

]
Using Row-major order, this is stored in linear memory as

1 2 3 4 5 6

Using Column-major order, the same 2-D array is stored as

1 4 2 5 3 6

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficient use of Memory

Row-major order:

C / C++

Python

Pascal

Java

Ada

Modula-2

most high-level languages

Column-major order:

FORTRAN

CUDA

IDL

MATLAB / GNU Octave

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficient use of Memory

Passing arguments to functions / subroutines:

Avoid creating functions with large numbers of arguments.

Combine arguments into an array or structure if possible; pass
a pointer to the array / struct.

Avoid passing large arguments (like entire objects or
structures) by value.

passing by reference eliminates the need to make a copy.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficient use of Memory

Passing arguments to functions / subroutines:

Avoid creating functions with large numbers of arguments.

Combine arguments into an array or structure if possible; pass
a pointer to the array / struct.

Avoid passing large arguments (like entire objects or
structures) by value.

passing by reference eliminates the need to make a copy.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficient Communication

Keep communication to a minimum

separate problem into sections which require minimal data
from other sections.

Example from N-body Methods: Domain decomposition

Use space-filling curve to divide problem among processors

Hilbert Curve:

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficient Communication

Peano-Hilbert Curve:

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficient Communication

Peano-Hilbert Curve:

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

This sort of domain decomposition has multiple benefits:

Regions which are close in space are handled by individual
processors

Particles close in space are close in memory

Requires message-passing only for long-range force
calculations

Achieves good load balance

processors share work-load more evenly
no overly-busy or idle processors

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Software Bottlenecks

Use a profiler to identify the slowest part of your code...

Profilers analyze program performance in detail.

In the case of GNU (GCC), the main profiler is GProf.

1 compile and link using the -pg flag.
2 run the compiled executable.
3 run gprof executable_file > output_file
4 Examine the output.

The Valgrind suite is also quite useful. Valgrind contains:

Memcheck – detects memory-management problems
Cachegrind – a cache profiler
Callgrind – adds call graph creation to Cachegrind
Massif – a heap profiler

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Software Bottlenecks

Use a profiler to identify the slowest part of your code...

Profilers analyze program performance in detail.

In the case of GNU (GCC), the main profiler is GProf.

1 compile and link using the -pg flag.
2 run the compiled executable.
3 run gprof executable_file > output_file
4 Examine the output.

The Valgrind suite is also quite useful. Valgrind contains:

Memcheck – detects memory-management problems
Cachegrind – a cache profiler
Callgrind – adds call graph creation to Cachegrind
Massif – a heap profiler

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Software Bottlenecks

Use a profiler to identify the slowest part of your code...

Profilers analyze program performance in detail.

In the case of GNU (GCC), the main profiler is GProf.

1 compile and link using the -pg flag.
2 run the compiled executable.
3 run gprof executable_file > output_file
4 Examine the output.

The Valgrind suite is also quite useful. Valgrind contains:

Memcheck – detects memory-management problems
Cachegrind – a cache profiler
Callgrind – adds call graph creation to Cachegrind
Massif – a heap profiler

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficiency Tips

There is overhead involved in creating a function call: Minimize
the number of function calls—especially within while and for
loops.

Reorganize the algorithm.

Simplify the logic (simplify mathematical expressions
algebraically).

Compute once and save the result for later use (if possible).

Write short functions inline or use the inline keyword.

these allow for manual optimization and more aggressive
compiler optimization.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficiency Tips

There is overhead involved in creating a function call: Minimize
the number of function calls—especially within while and for
loops.

Reorganize the algorithm.

Simplify the logic (simplify mathematical expressions
algebraically).

Compute once and save the result for later use (if possible).

Write short functions inline or use the inline keyword.

these allow for manual optimization and more aggressive
compiler optimization.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficiency Tips

Approximation: sometimes an approximation is good enough.

Using look-up tables + interpolation is sometimes faster than
repeated computation of expensive functions.

Alternatively, a low-order expansion in terms of orthogonal
polynomials (e.g., Taylor series or Chebyshev expansion)
might be accurate enough in some cases.

Example: sin(x)

For |x | ≤ 1.0, it is typically sufficient to compute
x - 0.166666667*x*x*x.

This is usually faster than computing sin(x)

Note: Chebyshev expansion tends to be more accurate than Taylor when >2 terms are used.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficiency Tips

Approximation: sometimes an approximation is good enough.

Using look-up tables + interpolation is sometimes faster than
repeated computation of expensive functions.

Alternatively, a low-order expansion in terms of orthogonal
polynomials (e.g., Taylor series or Chebyshev expansion)
might be accurate enough in some cases.

Example: sin(x)

For |x | ≤ 1.0, it is typically sufficient to compute
x - 0.166666667*x*x*x.

This is usually faster than computing sin(x)

Note: Chebyshev expansion tends to be more accurate than Taylor when >2 terms are used.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficiency Tips

Small integer exponents:

Computing gn as g*g*g*g*g*· · · *g for n < 10− 20 tends to
be faster than using pow(g,n).

Also try setting g2 = g*g. Then

gn = g2*g2*· · · *g2(or *g, if n is odd)

or create a cascade of such expressions.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficiency Tips

Division vs. Multiplication:

Multiplication tends to be faster than division.

0.5*g generally computes faster than g/2.

If you need to divide many numbers by the variable k,
compute

ki = 1.0/k

then replace instances of (expression)/k with
(expression)*ki.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficiency Tips

Small integer multiples:

On some hardware, addition is significantly faster than
multiplication.

computing 3g as g+g+g might be faster than computing 3*g.

test your target machine’s performance to see which form is
faster.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficiency Tips

Comparison operations: >,<,<=, >=

Comparisons of floating point numbers tend to be quite slow.

avoid when possible (or find a trick to speed up the
comparison).

Comparisons of unsigned integers tend to be faster than
comparisons of signed integers.

use unsigned int for counters and indices.*

Equality and negated equality (==, !=) are often faster than
<,>,<=, >=.

*Some OpenMP implementations require loop counters to be int.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficiency Tips

Comparison operations: >,<,<=, >=

Comparisons of floating point numbers tend to be quite slow.

avoid when possible (or find a trick to speed up the
comparison).

Comparisons of unsigned integers tend to be faster than
comparisons of signed integers.

use unsigned int for counters and indices.*

Equality and negated equality (==, !=) are often faster than
<,>,<=, >=.

*Some OpenMP implementations require loop counters to be int.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficiency Tips

Appropriate data types:

Computations involving larger data types use more memory
bandwidth, more cache space, and are performed more slowly
than low-precision data type computations.

Only use double precision when it is really needed.
Use long integers only when absolutely needed.
Use short int in place of int when possible.

In general: Use the smallest data type that will suffice.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficiency Tips

Appropriate data types:

Computations involving larger data types use more memory
bandwidth, more cache space, and are performed more slowly
than low-precision data type computations.

Only use double precision when it is really needed.
Use long integers only when absolutely needed.
Use short int in place of int when possible.

In general: Use the smallest data type that will suffice.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficiency Tips

Perform tests / experiments:

When optimizing, test multiple versions of code. Results may
be counter-intuitive

Reducing the number of total calculations can speed up a
loop...
BUT: reducing the number of calculations while increasing
memory usage may slow the algorithm.
ALWAYS run experiments to see which code version is faster.

Test different compiler optimization flags (and different
compilers: GCC, LLVM*, Open64, Intel, Oracle, PGI, Cray,
CAPS, PathScale, IBM).

* LLVM does not yet support OpenMP.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Efficiency Tips

Perform tests / experiments:

When optimizing, test multiple versions of code. Results may
be counter-intuitive

Reducing the number of total calculations can speed up a
loop...
BUT: reducing the number of calculations while increasing
memory usage may slow the algorithm.
ALWAYS run experiments to see which code version is faster.

Test different compiler optimization flags (and different
compilers: GCC, LLVM*, Open64, Intel, Oracle, PGI, Cray,
CAPS, PathScale, IBM).

* LLVM does not yet support OpenMP.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Extreme Efficiency Madness

The highest efficiency is obtained by carefully hand-coding and
targeting code for a specific microarchitecture...

Learn to code in assembly language!

Programming From the Ground Up
by Jonathan Bartlett

Read optimization guides & white papers written by CPU
manufacturers.

Nathaniel R. Stickley Methods of Computational Astrophysics

http://savannah.nongnu.org/projects/pgubook/

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

With a debugger, you can perform many debugging tasks quickly.
Most commonly:

Identify specific locations in the code (breakpoints) for the
execution to pause.

Identify conditions (watches) that will trigger the execution to
pause.

When the code is paused, you can:

examine the values of all variables.

manually change the values of variables.

manually call functions (essentially insert code) to change the
values of variables.

step through the code one line at a time.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

With a debugger, you can perform many debugging tasks quickly.
Most commonly:

Identify specific locations in the code (breakpoints) for the
execution to pause.

Identify conditions (watches) that will trigger the execution to
pause.

When the code is paused, you can:

examine the values of all variables.

manually change the values of variables.

manually call functions (essentially insert code) to change the
values of variables.

step through the code one line at a time.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

With a debugger, you can perform many debugging tasks quickly.
Most commonly:

Identify specific locations in the code (breakpoints) for the
execution to pause.

Identify conditions (watches) that will trigger the execution to
pause.

When the code is paused, you can:

examine the values of all variables.

manually change the values of variables.

manually call functions (essentially insert code) to change the
values of variables.

step through the code one line at a time.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

In the GNU world, the main debugger is gdb.

compile using the -g and -O0 flags.

Load the program using: gdb ./executable_name

At (gdb) prompt, set a breakpoint using: break line#

Set a watch condition using: watch condition

To run the program in gdb: run

To examine a variable: print variable_name

To change a variable: call variable_name = expression

To call a function: call function(arg1, arg2,...)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

In the GNU world, the main debugger is gdb.

compile using the -g and -O0 flags.

Load the program using: gdb ./executable_name

At (gdb) prompt, set a breakpoint using: break line#

Set a watch condition using: watch condition

To run the program in gdb: run

To examine a variable: print variable_name

To change a variable: call variable_name = expression

To call a function: call function(arg1, arg2,...)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

In the GNU world, the main debugger is gdb.

compile using the -g and -O0 flags.

Load the program using: gdb ./executable_name

At (gdb) prompt, set a breakpoint using: break line#

Set a watch condition using: watch condition

To run the program in gdb: run

To examine a variable: print variable_name

To change a variable: call variable_name = expression

To call a function: call function(arg1, arg2,...)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

In the GNU world, the main debugger is gdb.

compile using the -g and -O0 flags.

Load the program using: gdb ./executable_name

At (gdb) prompt, set a breakpoint using: break line#

Set a watch condition using: watch condition

To run the program in gdb: run

To examine a variable: print variable_name

To change a variable: call variable_name = expression

To call a function: call function(arg1, arg2,...)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

In the GNU world, the main debugger is gdb.

compile using the -g and -O0 flags.

Load the program using: gdb ./executable_name

At (gdb) prompt, set a breakpoint using: break line#

Set a watch condition using: watch condition

To run the program in gdb: run

To examine a variable: print variable_name

To change a variable: call variable_name = expression

To call a function: call function(arg1, arg2,...)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

In the GNU world, the main debugger is gdb.

compile using the -g and -O0 flags.

Load the program using: gdb ./executable_name

At (gdb) prompt, set a breakpoint using: break line#

Set a watch condition using: watch condition

To run the program in gdb: run

To examine a variable: print variable_name

To change a variable: call variable_name = expression

To call a function: call function(arg1, arg2,...)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

In the GNU world, the main debugger is gdb.

compile using the -g and -O0 flags.

Load the program using: gdb ./executable_name

At (gdb) prompt, set a breakpoint using: break line#

Set a watch condition using: watch condition

To run the program in gdb: run

To examine a variable: print variable_name

To change a variable: call variable_name = expression

To call a function: call function(arg1, arg2,...)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

In the GNU world, the main debugger is gdb.

compile using the -g and -O0 flags.

Load the program using: gdb ./executable_name

At (gdb) prompt, set a breakpoint using: break line#

Set a watch condition using: watch condition

To run the program in gdb: run

To examine a variable: print variable_name

To change a variable: call variable_name = expression

To call a function: call function(arg1, arg2,...)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

To continue to the next breakpoint/watch: continue

Execute the next line of code: next (or n)

Execute the next line and follow function calls: step (or s)

To execute a shell command: shell command

For help on a gdb command: help command

For general help: help

To exit: quit

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

To continue to the next breakpoint/watch: continue

Execute the next line of code: next (or n)

Execute the next line and follow function calls: step (or s)

To execute a shell command: shell command

For help on a gdb command: help command

For general help: help

To exit: quit

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

To continue to the next breakpoint/watch: continue

Execute the next line of code: next (or n)

Execute the next line and follow function calls: step (or s)

To execute a shell command: shell command

For help on a gdb command: help command

For general help: help

To exit: quit

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

To continue to the next breakpoint/watch: continue

Execute the next line of code: next (or n)

Execute the next line and follow function calls: step (or s)

To execute a shell command: shell command

For help on a gdb command: help command

For general help: help

To exit: quit

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

To continue to the next breakpoint/watch: continue

Execute the next line of code: next (or n)

Execute the next line and follow function calls: step (or s)

To execute a shell command: shell command

For help on a gdb command: help command

For general help: help

To exit: quit

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

To continue to the next breakpoint/watch: continue

Execute the next line of code: next (or n)

Execute the next line and follow function calls: step (or s)

To execute a shell command: shell command

For help on a gdb command: help command

For general help: help

To exit: quit

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Debuggers

To continue to the next breakpoint/watch: continue

Execute the next line of code: next (or n)

Execute the next line and follow function calls: step (or s)

To execute a shell command: shell command

For help on a gdb command: help command

For general help: help

To exit: quit

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Automatic Documentation

Documentation Generators...

Examine your source code and automatically document its
structure.

Use special comments and directives in the source code to add
high-level documentations for files, functions, classes,
variables.

Create HTML pages, images, PDF documents, & man pages
describing the code details and program usage.

Popular doc gens: Doxygen, ROBODoc, Sphynx, Epydoc

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Automatic Documentation

Documentation Generators...

Examine your source code and automatically document its
structure.

Use special comments and directives in the source code to add
high-level documentations for files, functions, classes,
variables.

Create HTML pages, images, PDF documents, & man pages
describing the code details and program usage.

Popular doc gens: Doxygen, ROBODoc, Sphynx, Epydoc

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Automatic Documentation

Documentation Generators...

Examine your source code and automatically document its
structure.

Use special comments and directives in the source code to add
high-level documentations for files, functions, classes,
variables.

Create HTML pages, images, PDF documents, & man pages
describing the code details and program usage.

Popular doc gens: Doxygen, ROBODoc, Sphynx, Epydoc

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Automatic Documentation

Documentation Generators...

Examine your source code and automatically document its
structure.

Use special comments and directives in the source code to add
high-level documentations for files, functions, classes,
variables.

Create HTML pages, images, PDF documents, & man pages
describing the code details and program usage.

Popular doc gens: Doxygen, ROBODoc, Sphynx, Epydoc

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Revision Control

Revision Control Systems... (version control, revision management)

Track source modifications.

Facilitate collaboration between multiple authors.

Stores entire history of each source file.

The user can “check out” any version of the source.
Bugs / performance regressions can be tracked more easily.

Multiple versions (branches) of the source can be worked on
simultaneously.

Branches can be merged fairly straightforwardly.

Can be used to manage any text-based document format (i.e.
LATEX documents and SVG images)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Revision Control

Revision Control Systems... (version control, revision management)

Track source modifications.

Facilitate collaboration between multiple authors.

Stores entire history of each source file.

The user can “check out” any version of the source.
Bugs / performance regressions can be tracked more easily.

Multiple versions (branches) of the source can be worked on
simultaneously.

Branches can be merged fairly straightforwardly.

Can be used to manage any text-based document format (i.e.
LATEX documents and SVG images)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Revision Control

Revision Control Systems... (version control, revision management)

Track source modifications.

Facilitate collaboration between multiple authors.

Stores entire history of each source file.

The user can “check out” any version of the source.
Bugs / performance regressions can be tracked more easily.

Multiple versions (branches) of the source can be worked on
simultaneously.

Branches can be merged fairly straightforwardly.

Can be used to manage any text-based document format (i.e.
LATEX documents and SVG images)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Revision Control

Revision Control Systems... (version control, revision management)

Track source modifications.

Facilitate collaboration between multiple authors.

Stores entire history of each source file.

The user can “check out” any version of the source.
Bugs / performance regressions can be tracked more easily.

Multiple versions (branches) of the source can be worked on
simultaneously.

Branches can be merged fairly straightforwardly.

Can be used to manage any text-based document format (i.e.
LATEX documents and SVG images)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Revision Control

Revision Control Systems... (version control, revision management)

Track source modifications.

Facilitate collaboration between multiple authors.

Stores entire history of each source file.

The user can “check out” any version of the source.
Bugs / performance regressions can be tracked more easily.

Multiple versions (branches) of the source can be worked on
simultaneously.

Branches can be merged fairly straightforwardly.

Can be used to manage any text-based document format (i.e.
LATEX documents and SVG images)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Revision Control

Revision Control Systems... (version control, revision management)

Track source modifications.

Facilitate collaboration between multiple authors.

Stores entire history of each source file.

The user can “check out” any version of the source.
Bugs / performance regressions can be tracked more easily.

Multiple versions (branches) of the source can be worked on
simultaneously.

Branches can be merged fairly straightforwardly.

Can be used to manage any text-based document format (i.e.
LATEX documents and SVG images)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Revision Control

Two Models

Client-server: the repository is on a server.

Subversion

Distributed: everyone has their own copy of the repository.

Git, Mercurial, Bazaar

Repository hosting sites:

Bitbucket, GitHub, Gitorious, Google Code, SourceForge.

It’s also easy to host your own (very easy to install on
GNU/Linux Apache server).

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Revision Control

Two Models

Client-server: the repository is on a server.

Subversion

Distributed: everyone has their own copy of the repository.

Git, Mercurial, Bazaar

Repository hosting sites:

Bitbucket, GitHub, Gitorious, Google Code, SourceForge.

It’s also easy to host your own (very easy to install on
GNU/Linux Apache server).

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Revision Control

Two Models

Client-server: the repository is on a server.

Subversion

Distributed: everyone has their own copy of the repository.

Git, Mercurial, Bazaar

Repository hosting sites:

Bitbucket, GitHub, Gitorious, Google Code, SourceForge.

It’s also easy to host your own (very easy to install on
GNU/Linux Apache server).

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Revision Control

Two Models

Client-server: the repository is on a server.

Subversion

Distributed: everyone has their own copy of the repository.

Git, Mercurial, Bazaar

Repository hosting sites:

Bitbucket, GitHub, Gitorious, Google Code, SourceForge.

It’s also easy to host your own (very easy to install on
GNU/Linux Apache server).

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: IDEs

Integrated development environments (IDEs)

More than simply a text editor with syntax highlighting and
code formatting.

IDEs can create a model of your code:

Check for errors on-the-fly (non-trivial syntax errors).
Auto-completion of syntax.

Show Doxygen comments in pop-up help. (hover over a
function / class name to get info)

Assist in code refactorization.

Integrate with profilers, debuggers, revision management.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: IDEs

Integrated development environments (IDEs)

More than simply a text editor with syntax highlighting and
code formatting.

IDEs can create a model of your code:

Check for errors on-the-fly (non-trivial syntax errors).
Auto-completion of syntax.

Show Doxygen comments in pop-up help. (hover over a
function / class name to get info)

Assist in code refactorization.

Integrate with profilers, debuggers, revision management.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: IDEs

Integrated development environments (IDEs)

More than simply a text editor with syntax highlighting and
code formatting.

IDEs can create a model of your code:

Check for errors on-the-fly (non-trivial syntax errors).
Auto-completion of syntax.

Show Doxygen comments in pop-up help. (hover over a
function / class name to get info)

Assist in code refactorization.

Integrate with profilers, debuggers, revision management.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: IDEs

Integrated development environments (IDEs)

More than simply a text editor with syntax highlighting and
code formatting.

IDEs can create a model of your code:

Check for errors on-the-fly (non-trivial syntax errors).
Auto-completion of syntax.

Show Doxygen comments in pop-up help. (hover over a
function / class name to get info)

Assist in code refactorization.

Integrate with profilers, debuggers, revision management.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: IDEs

Integrated development environments (IDEs)

More than simply a text editor with syntax highlighting and
code formatting.

IDEs can create a model of your code:

Check for errors on-the-fly (non-trivial syntax errors).
Auto-completion of syntax.

Show Doxygen comments in pop-up help. (hover over a
function / class name to get info)

Assist in code refactorization.

Integrate with profilers, debuggers, revision management.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: IDEs

The “best” IDEs for the GNU/Linux platform:

Qt Creator

KDevelop

NetBeans

Code::Blocks

Eclipse

Anjuta

IDLE (for Python)

Kile (similar to an IDE, but exclusively for LATEX / TEX)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Scripting

Using a scripting language can greatly improve productivity

Python and the Bourne Shell language are very useful
(especially Python!)

Write scripts for common tasks to avoid boring repetitive
work.

Use scripts to create a streamlined workflow.

Note:

The iPython interpreter can make you more productive!

The joblib Python package allows you to easily run many
jobs in parallel.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Data Backup

Avoid losing data due to hard drive failure, disaster, or theft!
Always make back-up copies.

The best tool for the job is rsync:

A powerful command line tool for copying (synchronizing)
data.

Can copy file permissions and all file attributes (modification
date, etc.)

Verifies that the copied data is uncorrupted.

Only transfers differences (transmits deltas).

Can backup data over an ssh tunnel! (create a remote copy)

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: Data Backup

You can use crontab + cron to schedule and run remote
backups at a regular interval.

1 Create ssh (public + private) key pair for source and
destination computers.

2 Create a shell script to run rsync.
3 Make a cron job to execute the shell script.

A good combination of rsync options:

rsync -apvztclEoge ssh src/ usrname@dest/

Add the “--delete” option to make a perfect copy.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: UNIX Utils

UNIX Utilities: Getting help on UNIX / GNU/Linux without
Google...

help command – display information about the built-in command.
man utility – display the utility’s online manual.
apropos keyword – search all online manuals for “keyword”.
whatis keyword – display online manual short descriptions.
info [keyword] – display info documents.
type command – show how the shell interprets command.
which [-a] command – show the location of command.

Nathaniel R. Stickley Methods of Computational Astrophysics

N-body Methods
Fluid Dynamics & Other Physics

High-Performance Computing

Microarchitecture
Vectorization & Parallelization
Optimization
Productivity

Productivity: UNIX Utils

Some useful commands and utilities to try:

Basic: cd, ls, pwd, stat, cp, mv, rm, mkdir, rmdir,
shred, date, echo, tree, touch, ln, history
Display / search / modify / filter: grep, locate, find,
watch, awk, head, tail, more, less, cat, tac, sort,
rev, split, csplit, cut, fold, sed, comm, cmp, diff,
sdiff
Misc: top, ps, pgrep, mpstat, w, df, who, users,
lsof, tar, gzip, gunzip, wget, export, env, uptime,
uname, ifconfig, ping, free, df, du, cron, crontab,
reboot, halt, mount, chroot, su, chown, chmod, chgrp

Nathaniel R. Stickley Methods of Computational Astrophysics

Acknowledgments

E. Gabriella Canalizo For facilitating the lectures.

Robert Weigel (M.S. advisor)

John Wallin for sharing his N-body / HPC notes

Rainald Löhner for teaching me CFD and HPC

Volker Springel & Lars Hernquist for significant contributions to
the field

Till Tantau - The author of the Beamer LATEX class.

Nathaniel R. Stickley Methods of Computational Astrophysics

Further Reading

Fluid Dynamics G.K. Batchelor

Galactic Dynamics Binney & Tremaine

Computer Simulation Using Particles Hockney & Eastwood

Numerical Recipes Press, Teukolsky, Vetterling, Flannery

Springel notes http://www.aip.de/summerschool2006/ (Third week)

TreeSPH Lars Hernquist, Neal Katz, 1989, ApJS, Vol. 70, p. 419-446

GADGET-2 Volker Springel, 2005, MNRAS, Vol. 364, Issue 4, p. 1105-1134

Lagrangian Meshes Volker Springel, 2009, MNRAS, Vol. 401, Issue 3, p. 791-851

Nathaniel R. Stickley Methods of Computational Astrophysics

http://www.aip.de/summerschool2006/

	N-body Methods
	The Problem
	Direct N-body
	Barnes-Hut
	Particle-Mesh
	Time Integration

	Fluid Dynamics & Other Physics
	Basic introduction
	Euler methods
	Lagrangian Methods
	Synthesis & Feedback

	High-Performance Computing
	Microarchitecture
	Vectorization & Parallelization
	Optimization
	Productivity

	Appendix

